The Role of Plate Tectonic–climate Coupling and Exposed Land Area in the Development of Habitable Climates on Rocky Planets

نویسنده

  • Bradford J. Foley
چکیده

The long-term carbon cycle is vital for maintaining liquid water oceans on rocky planets due to the negative climate feedbacks involved in silicate weathering. Plate tectonics plays a crucial role in driving the long-term carbon cycle because it is responsible for CO2 degassing at ridges and arcs, the return of CO2 to the mantle through subduction, and supplying fresh, weatherable rock to the surface via uplift and orogeny. However, the presence of plate tectonics itself may depend on climate according to recent geodynamical studies showing that cool surface temperatures are important for maintaining vigorous plate tectonics. Using a simple carbon cycle model, I show that the negative climate feedbacks inherent in the long-term carbon cycle are uninhibited by climateʼs effect on plate tectonics. Furthermore, initial atmospheric CO2 conditions do not impact the final climate state reached when the carbon cycle comes to equilibrium, as long as liquid water is present and silicate weathering can occur. Thus an initially hot, CO2 rich atmosphere does not prevent the development of a temperate climate and plate tectonics on a planet. However, globally supply limited weathering does prevent the development of temperate climates on planets with small subaerial land areas and large total CO2 budgets because supply limited weathering lacks stabilizing climate feedbacks. Planets in the supply limited regime may become inhospitable for life and could experience significant water loss. Supply limited weathering is less likely on plate tectonic planets because plate tectonics promotes high erosion rates and thus a greater supply of bedrock to the surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Habitable Climates: The Influence of Obliquity

Extrasolar terrestrial planets with the potential to host life might have large obliquities or be subject to strong obliquity variations. We revisit the habitability of oblique planets with an energy balance climate model (EBM) allowing for dynamical transitions to ice-covered snowball states as a result of ice-albedo feedback. Despite the great simplicity of our EBM, it captures reasonably wel...

متن کامل

Considerations for the habitable zone of super - Earth planets in Gliese 581

Aims. We assess the possibility that planets Gliese 581 c and d are within the habitable zone. Methods. In analogy with our solar system, we use an empirical definition of the habitable zone. We include assumptions such as planetary climates, and atmospheric circulation on gravitationally locked synchronous rotation. Results. Based on the different scenarios, we argue that both planets in Glies...

متن کامل

Life Potential on Early Venus Connected to Climate and Geologic History

Introduction: A key observation and open question in the Earth and Planetary Sciences is that the Earth is seemingly unique in that it exhibits plate tectonics and a buffered climate allowing liquid water to exist at the surface over its geologic lifetime. While we know plate tectonics is currently in operation on the Earth, the timing of its onset, the length of its activity, and its prevalenc...

متن کامل

Gcm Simulations of Unstable Climates in the Habitable Zone

It has recently been proposed that Earth-like planets in the outer regions of the habitable zone experience unstable climates, repeatedly cycling between glaciated and deglaciated climatic states (Menou 2015). While this result has been confirmed and also extended to explain early Mars climate records (Haqq-Misra et al. 2016; Batalha et al. 2016), all existing work relies on highly idealized ze...

متن کامل

Impact assessment of soil Physio-chemical properties on the development of the gully erosion

Extended abstract Introduction Water erosion has been a problem worldwide, which causes the phenomenon of land degradation in semi-humid areas of dry land. The risk of soil erosion in arid and semiarid areas, especially in mountain ranges is of significant cases in land use planning. Soil erosion in these areas is one of the important consequences of climate change, or in general, the ob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015